3.1550 \(\int \frac{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}}{(d+e x)^2} \, dx\)

Optimal. Leaf size=183 \[ \frac{\sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{e^4 (a+b x) (d+e x)}+\frac{3 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2 \log (d+e x)}{e^4 (a+b x)}-\frac{b^2 x \sqrt{a^2+2 a b x+b^2 x^2} (2 b d-3 a e)}{e^3 (a+b x)}+\frac{b^3 x^2 \sqrt{a^2+2 a b x+b^2 x^2}}{2 e^2 (a+b x)} \]

[Out]

-((b^2*(2*b*d - 3*a*e)*x*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^3*(a + b*x))) + (b^3*
x^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(2*e^2*(a + b*x)) + ((b*d - a*e)^3*Sqrt[a^2 +
 2*a*b*x + b^2*x^2])/(e^4*(a + b*x)*(d + e*x)) + (3*b*(b*d - a*e)^2*Sqrt[a^2 + 2
*a*b*x + b^2*x^2]*Log[d + e*x])/(e^4*(a + b*x))

_______________________________________________________________________________________

Rubi [A]  time = 0.258136, antiderivative size = 183, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.071 \[ \frac{\sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{e^4 (a+b x) (d+e x)}+\frac{3 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2 \log (d+e x)}{e^4 (a+b x)}-\frac{b^2 x \sqrt{a^2+2 a b x+b^2 x^2} (2 b d-3 a e)}{e^3 (a+b x)}+\frac{b^3 x^2 \sqrt{a^2+2 a b x+b^2 x^2}}{2 e^2 (a+b x)} \]

Antiderivative was successfully verified.

[In]  Int[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^2,x]

[Out]

-((b^2*(2*b*d - 3*a*e)*x*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^3*(a + b*x))) + (b^3*
x^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(2*e^2*(a + b*x)) + ((b*d - a*e)^3*Sqrt[a^2 +
 2*a*b*x + b^2*x^2])/(e^4*(a + b*x)*(d + e*x)) + (3*b*(b*d - a*e)^2*Sqrt[a^2 + 2
*a*b*x + b^2*x^2]*Log[d + e*x])/(e^4*(a + b*x))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 21.8991, size = 143, normalized size = 0.78 \[ \frac{b \left (3 a + 3 b x\right ) \sqrt{a^{2} + 2 a b x + b^{2} x^{2}}}{2 e^{2}} + \frac{3 b \left (a e - b d\right ) \sqrt{a^{2} + 2 a b x + b^{2} x^{2}}}{e^{3}} + \frac{3 b \left (a e - b d\right )^{2} \sqrt{a^{2} + 2 a b x + b^{2} x^{2}} \log{\left (d + e x \right )}}{e^{4} \left (a + b x\right )} - \frac{\left (a^{2} + 2 a b x + b^{2} x^{2}\right )^{\frac{3}{2}}}{e \left (d + e x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b**2*x**2+2*a*b*x+a**2)**(3/2)/(e*x+d)**2,x)

[Out]

b*(3*a + 3*b*x)*sqrt(a**2 + 2*a*b*x + b**2*x**2)/(2*e**2) + 3*b*(a*e - b*d)*sqrt
(a**2 + 2*a*b*x + b**2*x**2)/e**3 + 3*b*(a*e - b*d)**2*sqrt(a**2 + 2*a*b*x + b**
2*x**2)*log(d + e*x)/(e**4*(a + b*x)) - (a**2 + 2*a*b*x + b**2*x**2)**(3/2)/(e*(
d + e*x))

_______________________________________________________________________________________

Mathematica [A]  time = 0.169148, size = 132, normalized size = 0.72 \[ \frac{\sqrt{(a+b x)^2} \left (-2 a^3 e^3+6 a^2 b d e^2+6 a b^2 e \left (-d^2+d e x+e^2 x^2\right )+6 b (d+e x) (b d-a e)^2 \log (d+e x)+b^3 \left (2 d^3-4 d^2 e x-3 d e^2 x^2+e^3 x^3\right )\right )}{2 e^4 (a+b x) (d+e x)} \]

Antiderivative was successfully verified.

[In]  Integrate[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^2,x]

[Out]

(Sqrt[(a + b*x)^2]*(6*a^2*b*d*e^2 - 2*a^3*e^3 + 6*a*b^2*e*(-d^2 + d*e*x + e^2*x^
2) + b^3*(2*d^3 - 4*d^2*e*x - 3*d*e^2*x^2 + e^3*x^3) + 6*b*(b*d - a*e)^2*(d + e*
x)*Log[d + e*x]))/(2*e^4*(a + b*x)*(d + e*x))

_______________________________________________________________________________________

Maple [A]  time = 0.022, size = 216, normalized size = 1.2 \[{\frac{{x}^{3}{b}^{3}{e}^{3}+6\,\ln \left ( ex+d \right ) x{a}^{2}b{e}^{3}-12\,\ln \left ( ex+d \right ) xa{b}^{2}d{e}^{2}+6\,\ln \left ( ex+d \right ) x{b}^{3}{d}^{2}e+6\,{x}^{2}a{b}^{2}{e}^{3}-3\,{x}^{2}{b}^{3}d{e}^{2}+6\,\ln \left ( ex+d \right ){a}^{2}bd{e}^{2}-12\,\ln \left ( ex+d \right ) a{b}^{2}{d}^{2}e+6\,\ln \left ( ex+d \right ){b}^{3}{d}^{3}+6\,xa{b}^{2}d{e}^{2}-4\,x{b}^{3}{d}^{2}e-2\,{a}^{3}{e}^{3}+6\,{a}^{2}bd{e}^{2}-6\,a{b}^{2}{d}^{2}e+2\,{b}^{3}{d}^{3}}{2\, \left ( bx+a \right ) ^{3}{e}^{4} \left ( ex+d \right ) } \left ( \left ( bx+a \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^2,x)

[Out]

1/2*((b*x+a)^2)^(3/2)*(x^3*b^3*e^3+6*ln(e*x+d)*x*a^2*b*e^3-12*ln(e*x+d)*x*a*b^2*
d*e^2+6*ln(e*x+d)*x*b^3*d^2*e+6*x^2*a*b^2*e^3-3*x^2*b^3*d*e^2+6*ln(e*x+d)*a^2*b*
d*e^2-12*ln(e*x+d)*a*b^2*d^2*e+6*ln(e*x+d)*b^3*d^3+6*x*a*b^2*d*e^2-4*x*b^3*d^2*e
-2*a^3*e^3+6*a^2*b*d*e^2-6*a*b^2*d^2*e+2*b^3*d^3)/(b*x+a)^3/e^4/(e*x+d)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b^2*x^2 + 2*a*b*x + a^2)^(3/2)/(e*x + d)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.210004, size = 232, normalized size = 1.27 \[ \frac{b^{3} e^{3} x^{3} + 2 \, b^{3} d^{3} - 6 \, a b^{2} d^{2} e + 6 \, a^{2} b d e^{2} - 2 \, a^{3} e^{3} - 3 \,{\left (b^{3} d e^{2} - 2 \, a b^{2} e^{3}\right )} x^{2} - 2 \,{\left (2 \, b^{3} d^{2} e - 3 \, a b^{2} d e^{2}\right )} x + 6 \,{\left (b^{3} d^{3} - 2 \, a b^{2} d^{2} e + a^{2} b d e^{2} +{\left (b^{3} d^{2} e - 2 \, a b^{2} d e^{2} + a^{2} b e^{3}\right )} x\right )} \log \left (e x + d\right )}{2 \,{\left (e^{5} x + d e^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b^2*x^2 + 2*a*b*x + a^2)^(3/2)/(e*x + d)^2,x, algorithm="fricas")

[Out]

1/2*(b^3*e^3*x^3 + 2*b^3*d^3 - 6*a*b^2*d^2*e + 6*a^2*b*d*e^2 - 2*a^3*e^3 - 3*(b^
3*d*e^2 - 2*a*b^2*e^3)*x^2 - 2*(2*b^3*d^2*e - 3*a*b^2*d*e^2)*x + 6*(b^3*d^3 - 2*
a*b^2*d^2*e + a^2*b*d*e^2 + (b^3*d^2*e - 2*a*b^2*d*e^2 + a^2*b*e^3)*x)*log(e*x +
 d))/(e^5*x + d*e^4)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (\left (a + b x\right )^{2}\right )^{\frac{3}{2}}}{\left (d + e x\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b**2*x**2+2*a*b*x+a**2)**(3/2)/(e*x+d)**2,x)

[Out]

Integral(((a + b*x)**2)**(3/2)/(d + e*x)**2, x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.212968, size = 236, normalized size = 1.29 \[ 3 \,{\left (b^{3} d^{2}{\rm sign}\left (b x + a\right ) - 2 \, a b^{2} d e{\rm sign}\left (b x + a\right ) + a^{2} b e^{2}{\rm sign}\left (b x + a\right )\right )} e^{\left (-4\right )}{\rm ln}\left ({\left | x e + d \right |}\right ) + \frac{1}{2} \,{\left (b^{3} x^{2} e^{2}{\rm sign}\left (b x + a\right ) - 4 \, b^{3} d x e{\rm sign}\left (b x + a\right ) + 6 \, a b^{2} x e^{2}{\rm sign}\left (b x + a\right )\right )} e^{\left (-4\right )} + \frac{{\left (b^{3} d^{3}{\rm sign}\left (b x + a\right ) - 3 \, a b^{2} d^{2} e{\rm sign}\left (b x + a\right ) + 3 \, a^{2} b d e^{2}{\rm sign}\left (b x + a\right ) - a^{3} e^{3}{\rm sign}\left (b x + a\right )\right )} e^{\left (-4\right )}}{x e + d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b^2*x^2 + 2*a*b*x + a^2)^(3/2)/(e*x + d)^2,x, algorithm="giac")

[Out]

3*(b^3*d^2*sign(b*x + a) - 2*a*b^2*d*e*sign(b*x + a) + a^2*b*e^2*sign(b*x + a))*
e^(-4)*ln(abs(x*e + d)) + 1/2*(b^3*x^2*e^2*sign(b*x + a) - 4*b^3*d*x*e*sign(b*x
+ a) + 6*a*b^2*x*e^2*sign(b*x + a))*e^(-4) + (b^3*d^3*sign(b*x + a) - 3*a*b^2*d^
2*e*sign(b*x + a) + 3*a^2*b*d*e^2*sign(b*x + a) - a^3*e^3*sign(b*x + a))*e^(-4)/
(x*e + d)